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Universal Approximation (for Boolean functions)

1 We can represent any Boolean function with a linear combination of
perceptrons (an MLP with a single hidden layer)
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Universal Approximation (for real functions)

1 We can represent any continuous function to any desired
approximation with a linear combination of sigmoid neurons
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Universal Approximation using ReLU functions

1 Let’s approximate the following function using a bunch of ReLUs:

Example credits: Brendan Fortuner, and https://towardsdatascience.com/
Dr. Konda Reddy Mopuri dl -2/MLP 4



Universal Approximation using ReLU functions

1 n1 = ReLU(−5x − 7.7), n2 = ReLU(−1.2x − 1.3), n3 = ReLU(1.2x + 1), n4 =

ReLU(1.2x − 0.2), n5 = ReLU(2x − 1.1), n6 = ReLU(5x − 5)

Example credits: Brendan Fortuner, and https://towardsdatascience.com/
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Universal Approximation using ReLU functions

1 Appropriate combination of these ReLUs:
−n1 − n2 − n3 + n4 + n5 + n6

2 Note that this also holds in case of other activation functions with
mild assumptions.
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Universal Approximation Theorem

1 We can approximate any continuous function ψ : RD → R with one
hidden layer of perceptrons

2 x→ wTσ(Wx + b)
b ∈ RC ,W ∈ RC×D,w ∈ RC , and x ∈ RD

3 However, the resulting NN
May require infeasible size for the hidden layer
May not generalize well

Cybenko (1989), Hornik (1991)
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MLP for regression
1 Output is a continuous variable in RD

Output layer has that many neurons (When D = 1, regresses a scalar
value)
May employ a squared error loss

2 Can have an arbitrary depth (number of layers)
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MLP for classification

1 Categorical output in RC where C is the number of categories

2 Predicts the scores/confidences/probabilities towards each category
Then converts into a pmf
Employs loss that compares the probability distributions (e.g.
cross-entropy)

3 Can have an arbitrary depth
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Extending Linear Classifier

1 Single class: f(x) = σ(wT x+ b) from RD → R where w and x ∈ RD

2 Multi-class: f(x) = σ(Wx + b) from RD → RC where
W ∈ RC×D and b ∈ RC
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Single unit to a layer of Perceptrons
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Single unit to a layer of Perceptrons
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Single unit to a layer of Perceptrons
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Formal Representation

1 Latter is known as an MLP: Multi-Layered Perceptron (i.e,
Multi-Layered network of Perceptrons)

2 can be represented as:
x(0) = x,
∀l = 1, . . . , L, x(l) = σ(W(l)T x(l−1) + b(l)), and
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MLP
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Nonlinear Activation

1 Note that σ is nonlinear

2 If it is an affine function, the full MLP becomes a complex affine
transformation (composition of a series of affine mappings)
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Nonlinear Activation

Familiar activation functions

Hyperbolic Tangent (Tanh) x→ 2
1+e−2x − 1 and

Rectified Linear Unit (ReLU) x→ max(0, x) respectively
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